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Abstract

We present a study of the effect of artificial

dissipation models on nonlinear wave computations

using a few high order schemes. Our motivation
is to assess the effectiveness of artificial dissipation

models for their suitability for aeroacoustic compu-

tations. We solve three model problems in one di-

mension using the Euler equations. Initial condi-
tions are chosen to generate nonlinear waves in the

computational domain. We examine various dissi-
pation models in central difference schemes such as

the Dispersion Relation Preserving (DRP) scheme
and the standard fourth and sixth order schemes.

We also make a similar study with the fourth order

MacCormack scheme due to Gottieb and Turkel.

KEY WORDS: Artificial dissipation, High or-

der schemes, Computational aeroacoustics

1. Introduction

Very high numerical accuracy is essential in

aeroacoustics computations. To get such accuracy,

one should use high order schemes with very lit-

tle numerical dispersion and dissipation. Numeri-

cal solutions with high order schemes are usually

very good in flows without shocks. However, be-
cause of inadequate numerical dissipation a high

order scheme may generate spurious oscillations in

presence of shocks or steep gradients. In this study

we consider computations of flows with very sharp
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gradients. Such flow conditions may appear in su-

personic jet noise computations. All basic schemes

used in this study are formally at least fourth order

accurate in space. We augment these basic schemes

with various artificial dissipation models and eval-

uate these artificial dissipation models. Tam and

his colleagues specifically designed basic scheme for
aeroaconstic calculations and it is known as the Dis-

persion Relation Preserving (DRP) scheme 1' 2, 3
The DRP is a central finite difference scheme. We

also consider the standard fourth and the sixth order

central difference schemes and the fourth order Mac-
Cormack scheme due to Gottlleb and Turkel 4. The

fourth order MacCormack scheme has been tested

for accuracy in aeroaconstic applications 5' 6 and is

extensively used, e.g. 5' 7, 8, 9, 10

In their study of the DRP schemes for non-

linear wave computations, Tam and his colleagues
discovered that the wavelengths of spurious oscil-
lations are concentrated in a narrow hand in short

wave range. They formulated a selective artificial

damping model to suppress such oscillations and

used it for computation of nonlinear pulses 3. There

are many other dissipation models which are also
shown to be effective in flow computations. One

such dissipation model was proposed by 3ameson et

al. 11. This model is widely used in aerodynamic

calculations. Turke112 extended this model to a set

of matnx-valued coefficients to give appropriate vis-

cosity for each wave component. In this study, we

will consider these dissipation models and also the

model proposed by MacCormack and Baldwin 13.

In the next section we give the governing equa-

tions. Descriptions of the basic schemes and arti-

ficial dissipation models are presented in sections 3

and 4 respectively. We give our test problems in
section 5 and discuss results in section 6.



2. GoverningEquations

WesolvetheonedimensionalEulerequations
writtenin thefollowingform

where
Q=+I_ =o

f= pu2 +p

puH

p= I)(E-

H = E +_____P
P

where p, u, p, 7, E and H axe the density, vdocity,

pressure, ratio of specific heats, tots] energy and

enthalpy respectively.

3. Basic Schemes

We consider a high order MacCormack scheme

along with a few central difference schemes. The
MacCormack scheme uses forward and backward

differences in predictor and corrector sweeps. Ail

basic schemes presented in this study can be writ-
ten in conservative discrete form. Such conserva-

tion is very important for flows with shocks and is

illustrated by the fundamental theorem of Lax and
Wendroffl4,15

3.1 The DRP and Central Schemes

Tam and Webb I developed a class of high or-

der scheme known as the Dispersion Rdation Pre-

serving (DRP) scheme for computational acoustics.
They used central differencing for spatial discretisa-

tion. The coefficients of theix spatial discretization

scheme were chosen by requiring the Fourier trans-

form of the Jinite difference scheme be a close ap-

pzoximat/on to that of the partial derivatives. Tam
and Webb used a seven point stencil for fourth order

spatial accuracy. They proposed a multilevel finite

difference time integration scheme. Coefficients of

this time integration algorithm were chosen so that

the Laplace transform of the finite difference scheme
is a good approximation of the paxtis] derivative.
Their scheme can be written as

3
1

K_---'_-'zz E ajJ_+_ (3.1a)
,_=-S

3

Q_+Z = Q_ + At E bJK_-J (3.1b)
j=0

a0 = 0; al = --a-z = 0.79926643

a2 = -a-2 = --0.18941314

as = --a-s = 0.02651995

b0 = 2.30255809; bz = -2.49100760

b2 = 1.57434093; bs - -0.38589142

Above DRP scheme is formally fourth order accu-

rate in space and third order accurate in time. In

a later study, Tam and Shen 2 revised the values of

the coefficients aj to obtain a better overall numer-
ical wave chaxacteristics for a seven point stencil.

Revised aj coefficients axe

az = -a-z = 0.770882380518

a2 = --a-2 = --0.166705904415

as = --a-s = 0.020843142770

For all computations with the DRP scheme in

this paper, we used the above set of values for aj.
This DRP scheme has a seven point stencil and for-

ms] fourth order spatial accuracy. The coefficients

aj in the standaxd fourth order central difference
scheme are

2 1

ao=O; az=-a-z=_; a==-a-2=-_--_

The stenCil is five points wide, i.e., as = a_n=O.
Similaxly the standard sixth order central difference

scheme on s seven point stencil is

3 3
ao=O; az=-a-z=_; a2-'--a-2=-_-_

1
as = --a-s = --

60



For time integration of the DRP, the standard
fourth and the sixth order central difference schemes

we use the algorithm given in eq. 3.lb. Thus the

formal temporal accuracy for these calculations is
third order.

3.2 High order MacCormack Scheme

Gottlieb and Turkel 4 extended the standaxd

MacCormack scheme (2nd order accurate in both
space and time) to a spatially fourth order accurate

scheme. In this study we will refer this scheme as
the fourth order MacCormack scheme. This scheme

has a predictor and a corrector stage and for one

dimensional computations may be written as:

the predictor step with forward di_erences is

A_
¢,= Q? + 6-Z-_{7(ff+I- if)- (ff+_-/7+i)}

(3.2.);

and the cotrectot step with backward differences is

1

Qr+I= _[_'+ Q?

(3.2b)

This scheme is second order accurate in time and

becomes fourth order accurate in the spatial deriva-

fives when alternated with symmetric variants 4,

16. We define L1 as a one dimensional operator with

a forward difference in the predictor and a back-
ward ditference in corrector. Its symmetric variant

L2 uses a backward difference in the predictor and
a forward difference in the corrector. Therefore to

ensure the fourth order spatial accuracy, the sweeps

axe arranged in our computations as

Q.+I = LIQ.

Q"+_ = L2Q"+ 1

In this study when we add any disspation model

in this scheme (except the MacCormack-Baldwin

model in §4.2) we modify only the corrector step
as

= _ [Q' + Q?Q7+1

+6-_{_(_ - _-i)- (_-i- _-_)}]+ AtDi

where D_ is the artificial dissipation at location i.

Alternatively, one can also add dissipation in both

predictor and corrector steps as in the case of Mac-

Cormack Baldwin model ($4.2).

4. Artificial Dissipation Models

4.1 Tam's Model

The basic DRP scheme (§3.1) has very little

numerical disspation. In order to compute nonlinear

waves with this scheme, Tam and his colleagues 2, 3

formulated an artificialselective damping term to

be added to the basic algorithm. Thus, the eq. 3.1a
becomes

3

I _.j/?+_ + D_

8

D__ _" _ _Q_+j (4.1)
AzR, j=-s

where u_ = I._ e'_ -- u_"[ is the difference between

the maximum and the minimum velocity in the com-

putational stencil centered at location i. The coef-

ficients cj are determined by requiring the damping
function be a close approximation to a Gaussian

function. Tam and Shen 2 recommended following

numerical parameters after extensive numerical ex-

periments:

co = 0.327698660846; cI = --0.235718815308

c2 = 0.086150669577; cs= -0.014281184692

The damping function (D) is an even function, i.e.,

c_j = cj. Their recommended value for the sten-

cil Reynolds number (R,) is 0.1. Recently Tam 17

used the stencil Reynolds number equal to 0.05 in

his computation of the wave equation. We would

like to point out that Tam and his co]lcagues for-

mulated this dissipation model to specifically main-

tain the correct propagation characteristics of waves

and damp short waves generated by numerical so-
lution, rather than to maintain high order of accu-

racy in the sense of expanded Taylor series. Thus

this model should yield good results related to wave

propagation characteristics.

4.2 MacCormack-Baldwin Model

MacCormack and Baldwin 13, 18 devised a dis-

sipation model for the MacCormack scheme. Thus,
the modified flux becomes



-- f_+ •(I,,.,I+ c)I_+,. - 2_ + __lldQ._
_+_. + 2.pi + _-i

where dQi is a forwaxd difference (i.e., Q_+x - Q_)

in the backward sweep and _'/ce _eT'sa. The physical

flux and the speed of sound axe f and c respectively.
The modi_ed scheme with artificial viscosity is ob-

tained by replacing f by f in the basic scheme (i.e.

in eq. 3.2a and 3.2b for the fourth order MacCor-
mack scheme). The paxameter • should be between

0 and -_ for stability. In our tests we use • - -_.

4.8 JST Model

Jameson, Schmidt and Turke111 proposed an

axtificial dissipation model where the convective flux
is modified as

where

•_+i = A+-_ - d_+i

dd+_ = A_+½[e_dWi-e(4)(dW_+l-2dW_+dVtr__t)]

(4.3)

dW_ = W_+_ - w_

• = m (O,C,,<4>-

[/_+1 - 2pi +l_-xl

Pi+x + 21_ +l_-x

w= Q+ [o,o,r] T

_(2) x= _' _(4) = _ and A is a scaling factor. In
this study we use A = ]u I ÷ c. The second differ-

ence term adds dissipation neat the shock while the

fourth difference term damps high-fxequency modes
and reduces to zero near the shock. We will refer

this model as the JST dissipation model in this pa-

per. The damping function (D_) for this model is
as follows:

D_ = [d_+__ - d___]
Az

4.4 Turkel's Matrix-Valued Model

Turkd 12 proposed a matrix scaling instead of

scalax scaling in the JST dissipation model. This

matrix dissipation model was tested by 3o_genson

and Turke119. One major objective of this model

is to reduce the amount of artificial dissipation for

slower waves. Thus the scaling parameter A in eq.
4.3 becomes a matrix. Details of this matrix axe

given in the above cited references. We implemented
this model as follows:

Az

A=ksI+(k_+k_2 _8)[_ _IG_+G2]

j( AlL -- A2 r_

_l_= + (_ - I)G_]

(R1)G_ = uR_

\ HRx

(°)uR_

\ H_

(°)
uR1

g2

R_ - (T'-'_' _)

Rn = (-u, 1, 0)

_s=(_,-_,l)

{ 11 1•% = I,_-clmax(_,_+l)
,x_ I"1m_(_,_,+_)

IP_+_ - 2p_ + P_-I[

/_+_ + 2/_ +/__

I_+_ - 2_ + _-_l
/a = T_+_ + 2T_ + __x



AQ,(j) = e_2)(j)dQ,+e_4)(j)(dQ_+l-2dQ,+dQ_-l)

where T is temperature, parameters _(2) and _(4)

are same as in the JST model.

5. Test Problems

We consider three test problems to evaluate

various dissipation models in the basic schemes.

The f_st two problems were previously used to eval-

uate various algorithms in the ICASE/LaRC Work-

shop on Benchmark Problems in Computational
Aeroacoutica 20. In addition we consider Lax's shock

tube problem.

5.1 Test Problem 1

In this problem a initial pulse steepens with

time. Initial conditions are given as:

u = 1 -(-_)_(_2)
2 e

7-1 '-=-
p = 1(1 + ---_u),-'

p = (1 + !_/_)_

The computational domain is -50 < x < 350.

5.2 Test Problem 2

This is similar to a standard shock tube prob-

lem. There is a very sharp gradient instead of a
discontinuity in the initial condition. Initial condi-

tions are

u = 0

p = 4.4

p "- 1.

p = (_p)_,
The computational domain is -100 < x < 100.

x < -2

-2<z<2

z>2

5.$ Test Problem 3 (Lax's problem)

This is a Riemann (shock tube) problem used

by Lax 21. Initial conditions are

u = .698, p = 3.528, p = .445 for 0 < z < .5

u=O,p=.571, p=.Sfor.5<z< 1

The computational domain is 0< x < 1.

6. Results

One uses artificial dissipation to eliminate spu-

rious numerical oscillations in computed flows with

shocks or steep gradients. Too little dissipation may

not be enough to remove spurious oscillations, while

too much dissipation will smear of the solution pro-

file and destroy the accuracy of the computed so-
lution. Therefore one should try to add appropri-

ate amount of dissipation to a basic scheme. Our

primary goal in this study is to examine the effec-
tiveness of a few artificial dissipation models. We

tried to keep the model constants same as in cited
references and did not attempt to optimise any con-

stant. We tested these dissipation models in a few

basic schemes. A comparison of two such schemes,

namely the DRP and the fourth order MacCormack

scheme (without dissipation) for the first two test

problems was presented in an earlier study 22. Here
we also consider the standard fourth and sixth or-

der central difference schemes. For all our com-

putations reported in this paper we used 401 grid

points and the characteristic boundary condition at
the boundaries. In the first test problem, an ini-

tial pulse steepens with time and nonlinear effects

become very important. In Figure 1, we show the

evolution of the density profile for this test prob-

lem. These computations were made using the DRP
scheme with the Tam dissipation model with the

stencil Reynolds number (R°) equal to 0.05. We
observe that the initial profile steepens quickly and

at t = 100 the leading edge becomes very sharp. We

chose this time level to evaluate the damping models

and the basic schemes for computations of the test

problem 1. All computations with the central differ-

ence schemes (the DRP, standard 4th and 6th order

central difference scheme) presented in this paper

were done with CFL number equal to _c" In Fig-
ure 2, we show density profiles computed using the
DRP scheme at t=100. There is excessive amount

of oscil]ations in the computed solution when no ar-

tificial dissipation is used. Both the Tam dissipa-



tion model (R, = 0.1) and Turkel's matrix valued

disspation model eliminated most of the oscillations.

We used _(2) = 4 and _(4) = _ for computations
with the matrix valued dissipation model. These
values of _ are 16 times the recommended values

in the JST model (_4.3). As indicated earlier, par-

ticular values of the constants may be optimized

for a given basic scheme. Here we chose the values

of _ only to ensure sufficient damping. Parametric

studies of the constants may yield a better choice.

In addition to different choices of _, one may also
try to optimize this dissipation model with differ-

ent choices of switching parameters e.g., _, v_, etc.

in _4.4. However, fine tuning of the parameters is

expensive and may not be always feusib]e in practi-

cal computations. The Tam dissipation model has

a scaling parameter known as the stencil Reynolds

number(R,). Effect of this parameter and also a

comparison of the standard 4th and the 6th order
central difference schemes with the DRP scheme are

shown in Figure 3. The DRP scheme which we con-

sider in our tests is formally 4th order accurate in
space and uses a seven point stencil. The standard

4th order central difference scheme uses a five point
stencil and the standard 6th order central difference

scheme uses a seven point stencil. We observe that

the DRP scheme performs better than the standard

4th order scheme. However, the differences between
the DRP scheme and the standard 6th order central

difference scheme for our present computations ap-

pear to be very small. These results show the same
trend as in wave equation computations presented

by Tam 17. The artificial dissipation may have re-

duced the differences among the schemes. We also

observe that with the change of the stencil Reynolds

number (R,), both the solution profile and the shock
location change slightly.

Next we evaluate the dissipation models for

computation of the test problem 1 with the fourth
order MacCormack scheme. We used the CFL num-

ber equal to -_ for all computations in this paper
using the fourth order MacCormack scheme. Den-

sity profile computed using this scheme without any

added artificial dissipation is shown in Figure 4.
We also show the computed profile using the DRP

scheme augmented with the Tam dissipation model

(R, = 0.1). The fourth order MacCormack scheme
with its builtin dissipation appears to generate mi-

nor spurious oscillations. One may use artiJlcial dis-

sipation model to reduce these oscillations. Effects

of various dissipation models on the computed den-

sity profiles near the shock are shown in Figure 5.
Values of _ used in the :JST and Tarkel's matrix

dissipation model are given in §4.3. We used higher

values of stencil Reynolds number for the Tam dis-

sipation model to avoid excessive smearing of the

shock profile. Both MacCormack-Baldwin (MB)
and Turkel's matrix dissipation model gave sharp

shock profiles. Other models also performed rea-
sonably well. The Tam dissipation model appears

to be slightly better in eliminating preshock oscil-

lations, but also seems to smear the shock profile
more than other models.

Our second test problem has a very sharp gra-

dient in the initial condition. In Figure 6, we show

the initial and computed profiles of this test prob-
lem at time equal to 50. Computed solutions were

obtained using the DRP and the standard 6th or-

der centraldifferenceschemes. Inthisplottingscale,

differencesbetween the DRP and the 6th ordercen-

traldifferencescheme are not noticeable.The Tam

dissipationmodel with the stencilReynolds number

equalto0.1 was used forthesecomputations. There
are minor oscillationsnear the shock. We concen-

trateon that regionin the next two figures.In Fig-

ure 7, we compare solutionswith the DRP scheme

with and without artificialdissipation.Model con-

stants_(2)and _(4)in the matrix dissipationwere

kept asinthe caseshown in Figure2. Both the Tam

dissipationand Turkel'smatRx dissipationmodels

were effective in eliminating spurious oscillation in

the computed solutions. The Tam dissipation model

with the stencil Reynolds number (Rj) equal to

0.05 appears to be slightly better that the recom-
mended value i.e., 0.1 in removing most of the os-

cillations. The shock location is slightly different

with these two values of the stencil Reynolds num-

bers. We then compare the DRP and the standard

central difference schemes with the Tam dissipation
model in Figure 8. Differences in the computed so-
lutions with the DRP and the standard central dif-

ference schemes appear to be small. This may be

partially caused by the presence of large amount

of artificial dissipation in the computed solutions.

Next we examine the dissipation models in the Mac-

Cormack scheme for computation of the test prob-

lem 2 at time equal to 50. In Figure 9, we show

the density profile computed using the MacCormack
scheme without dissipation and compare it with the

solution using the DRP scheme with the Tam dissi-

pation model (Ro : 0.1). The MacCormack scheme

without dissipation generates oscillations near the
shock. We examined the effect of various dissipation

models on the MacCormack scheme in Figure 10.
The shock profile is slightly sharper with the ma-

trix dissipation model than other models. As in the



casewith the test problem 1, preshock oscillations

were slightly less with the Tam dissipation model,
but the shock profile was slightly more smeared.

We examine the profile near the contact disconti-

nuity in Figure 11. For computations in this re-

gion, MacCormack-Baldwin (MB) and Turkd's ma-

trix dissipation model performed wall.

Our last test problem is a shock tube problem

and was used by Lax 21. In this paper we show

computed solutions of this problem at time equal
to 0.16. For this model problem, the values of

used in the matrix dissipation model are 16 times

the recommended values of the JST model (§4.3).

This choice was made only to ensure sufficient atti-

tidal dissipation for the test cases without any op-
timization of the values of _. As shown in Figure

12, major differences in computed solutions are lim-

ited to regions around the discontinuities. We fo-

cus on this region for computations with the DRP
and MacCormack schemes in next two figures. In

Figure 13 we compare computed density profiles us-
ing the DRP scheme with the exact solution. The

computed profile with the stencil Reynolds num-

ber equal to 0.1 appear to be in reasonable agree-

ment with the exact solution. Solution using the

fourth order DRP scheme (seven point stendl) is

very close to that using the standard sixth order

central scheme (seven point stencil). For the sten-

dl Reynolds number equal to 0.05, the solution is
smeared and the shock location is slightly shifted.

The smearing of the shock profile is due to excessive

amount of art/tidal disspation. The change in the

shock location may in part be caused by the Tam

dissipation model which is not cast in conservation

form. Tam and Shen 2, however, pointed out that

some dispersion error may come from their damping
model. We next examine computations using the

fourth order MacCormack Scheme. Solutions using

this scheme are shown in Figure 14. As in the case

of previous test problems, computed solutions with-
out any artificial dissipation exhibit osciUations. We
also show the results with the MacCormack-Baldwin

and Turkd's matrix disspation model in this figure.

Artificial dissipation models eliminated most of the

spurious numerical oscillations. Our choices of the

values of s may have caused excessive damping with

the matrix dissipation model. Finally we show com-

puted pressure profiles of Lax's problem in Figures
15 and 16. Here again we find that artificial dis-

sipations eliminated most of the oscillations in the

DRP (see figures 2, 7 and 8 for solutions using the

DRP scheme without artificial dissipation) and the

7

fourth order MacCormack scheme without artificial

dissipation. Basic observations are essentially the

same as from computed density profiles.

In summary, we would like to say that various
artificial models considered in this study in general

performed well. However, one probably should opti-

mize some parameters to improve the quality of the
solutions. The fourth order MacCormack scheme

without any artificial dissipation generates spuri-

ous oscillations near sharp gradients. We recom-

mend adding artificial dissipation for computations
of nonlinear waves or flows with shocks with this

scheme. Artificial dissipation plays a more impor-

tant role in getting good computed solutions using

the DRP scheme. Without any artificial damping,

the DRP scheme appears to generate excessive nu-
mericnl oscillations.
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